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Abstract

The present paper is focused on the development of a constitutive model for the computational analysis of the
mechanical behaviour of hyperelastic materials. One of the main obstacles in solving nonlinear elastic problems is
the constitutive equation that must be as simple as possible but also realistic in the large strain range, especially for
engineering purposes. Gao has proposed a relatively simple model that shows a good performance in tension as well
as in compression. In this paper, the capabilities of Gao’s model have been discussed. Three sets of experimental data
of different types of deformation are used to identify the model parameters. Numerical simulations are in good agree-
ment with experimental data. Comparisons with Ogden’s formula and Mooney-Rivlin’s formula by means of a theo-
retical and a numerical analysis demonstrate that Gao’s model performs well for the description of hyperelastic material
behaviour and covers a very large range of deformation. Another advantage of this model is that it only needs two
parameters to predict the mechanical behaviour of hyperelastic materials. As an application, a singular problem of a
wedge loaded by a concentrated tensile force is analysed.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The variety of applications of rubber-like materials in different industrial areas is enormous. In the auto-
motive industry, rubber is applied in tires, as engine seals and door seals, whereas in aerospace industry
rubber rings are used in fuel systems. In other engineering fields, rubbers have been applied in conveyor
belts, meteorological balloons and bearings of foundations. An increase of applications requires a better
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understanding of mechanical behaviour of rubber-like materials. Due to the complexity of rubber compo-
nents, an important problem in nonlinear elasticity theory is to derive a reasonable and applicable elastic
law, which is the key to the development of reliable analysis tools.

Many attempts have been made to develop a theoretical stress—strain relation that fits experimental re-
sults for hyperelastic materials (Charlton and Yang, 1994; Boyce and Arruda, 2000; Miehe et al., 2004). For
example, Mooney (1940) proposed a phenomenological model with two parameters based on the assump-
tion of a linear relation between the stress and strain during simple shear deformation. Later, Treloar (1958)
published a model based on the statistical theory, the so-called neo-Hookean material model with only one
material parameter. However, this was proved to be merely a special case of the Mooney model. The
Mooney and neo-Hookean strain energy function have played an important role in the development of
the nonlinear hyperelastic theory and its applications (Ogden, 1984, 2001). It has been proved by Bogert
(1991) that the Mooney model performs well for moderately large deformation of uniaxial elongation
and shear deformation. But, it cannot describe the S-curvature of the force—stretch relation in the uniaxial
elongation experiment and the force—shear displacement relation in a shear experiment. In 1950, Rivlin
(1948a,b, 1949) modified the Mooney model to obtain a general expression of the strain energy function
expressed in terms of strain invariants. One of the successful models in this class has recently been deve-
loped by Yeoh (1993) in the form of a third-order polynomial of the first invariant of the right Cauchy—
Green tensor. An alternative high-order polynomial model of the first invariant has been proposed by Gent
(1996) and has the form of a natural logarithm.

In 1972, Ogden (1972a,b) proposed a strain energy function expressed in terms of principal stretches,
which is a very general tool for describing hyperelastic material. An excellent agreement has been obtained
between Ogden’s formula and Treloar’s experimental data for extensions of unfilled natural rubber up to
700% (Ogden, 1972a,b). However, the parameter identification is complicated because of the purely phe-
nomenological character of the Ogden strain energy function.

Besides these purely phenomenological models, micro-mechanically based idealized network models
have also been proposed. The first explicit expression for the configurational entropy of a single chain
was given by Kuhn and Grun (1942). James and Guth (1941) proposed a model based on the assumption
that the possible configurations of links in a chain are described by using a Gaussian distribution. This net-
work model is frequently referred to as the three-Gaussian-chain model, which is available for small strains.
For the large strain range, James and Guth (1943) and Wang and Guth (1952) proposed a non-Gaussian
network model consisting of three independent sets of chains (each set contains /3 chains per unit volume),
a so-called three-chain model. Treloar (1946) and Flory and Rehner (1943) simplified the complex polymer
network by a four-chain model, in which four non-Gaussian chains are connected to the corners of a tet-
rahedron. Later on, Arruda and Boyce (1993) developed an eight-chain model and Wu and van der Giessen
(1993) proposed the so-called full-network model. Recently Boyce (1996) compared the eight-chain model
to the first invariant-based Gent model and demonstrated the almost equivalence of these two models in the
sense of their constructions and fitting qualities of test results. A more recent model, which is called the
non-affine micro-sphere model has been proposed by Miehe et al. (2004).

Theoretical analysis and engineering application require the constitutive law to be expressed as simply as
possible. However, simplicity often violates rationality. When we consider a problem with a singular point
(such as a crack tip or a concentrated force), the situation is different from the finite deformation case
(Knowles and Sternberg, 1973; Mooney, 1940). Actually, near a singular point in rubber-like materials,
the strain goes to infinity, which complicates the problem. To reflect the material behaviour near a singular
point, Gao proposed a simple elastic law that separately considers the resistance of materials to tension and
compression (Gao, 1997). This constitutive relation was successfully used to analyse singular problems
(Gao, 1997, 1999; Gao and Chen, 2001).

In this paper attention is restricted to the development of Gao’s constitutive model (Gao, 1997) for com-
putational analysis of the static behaviour of hyperelastic materials. In Section 2, Gao’s constitutive elastic
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law is presented as well as Drucker’s stability postulate and parameters are discussed; Special subroutines
are programmed to implement Gao’s elastic law in the DIANA finite element package. Three sets of exper-
iments under different loading conditions are described and estimations of material parameters of Gao’s
model are carried out in Section 3; numerical simulations are assessed on the basis of experimental data
in this section. In Section 4, Gao’s law is theoretically and numerically compared with Ogden’s formula
and Mooney—Rivlin’s formula. In Section 5, a numerical analysis of a wedge loaded by a concentrated ten-
sile force is compared to an analytical asymptotic solution.

2. Basic formula and elastic law
2.1. Basic formula

A three-dimensional domain of the material is considered. Before deformation, the base vectors along X
direction at a point in curved coordinates are e; (i =1, 2, 3) where |le;| =1 and e; - e; = J/.

Let £ =¢;e; ® ¢; denote the Green strain tensor, and U be the unit tensor. The right Cauchy—Green
strain tensor is obtained via

C=2+1, (1)
in which
C=g,e®e, (2)
with
gy = 26 + 0y (3)
The strain invariants can be expressed as
I,=C:U, I,=C:C, I;=C*:C, I,=C"':U. (4)

The following strain invariant is also used later:
I =317 — I). ()
For isotropic material, the strain energy per unit underformed volume W can be expressed by indepen-
dent strain invariants. The second Piola—Kirchhoff stress reads
ow oW oC ow
T= = =2, (6)
dg 0C Og oC
The incremental stress—strain relation is obtained by differentiation of the above equation one more time
with respect to strain, so that

2
or o oC_ e oW -
og 0OC O0g oC oC?

or in the form

dr = D(dey;, dex, dess, depa, ey, dey) T, (8)
where
D = (D11, Dijp2, Dij33, Dijia + Dijo1, Dijo3 + Dyjzo, Dijis + Dija1), )

is the tangential stiffness matrix.
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2.2. An elastic law

Gao proposed a strain energy function that separately considers the resistance of materials to tension
and compression for hyperelastic and isotropic materials. Accordingly, a strain energy formulae that only
contains two terms was given by Gao (1997):

W=a(li+1"), (10)

where a and #n are positive material parameters. In this model, no damping, energy loss, creep, relaxation or
hysteresis are taken into consideration. The second Piola—Kirchhoff stress becomes

ow . Ny
T =255 = 2na(l] 'u-14'c?). (11)

The second Piola—Kirchhoff stress tensor is a useful stress measure for application in numerical pro-
grammes since it is calculated with respect to the known, undeformed configuration. For engineering pur-
poses the Cauchy stress tensor is more appropriate. Both stress measures are related via

c=J'F-7 F, (12)

where J is the Jacobian of the transformation. J represents the ratio of the actual volume of the infinitesimal
body to the initial volume and can be calculated by the determinant of the deformation gradient

J = /det(C) = [{(1} — 31,1, + 213)] . (13)
Let ; denote the values of principal strain, then
Li=+05475 1=+ +2% J=l (14)

The second Piola—Kirchhoff stress in Eq. (6) and the incremental stress—strain relation in Eq. (8) are
basic equations for implementation of a hyperelastic material model in finite element software with the
proposed strain energy function. So, substituting Eq. (10) into Egs. (6) and (8), the second Piola—Kirchhoff
stress and the incremental stress—strain relation can be derived.

Mooney—Rivlin, Ogden and Besseling (1983) models are available for hyperelastic behaviour in the finite
element program DIANA. Special subroutines are programmed in order to implement Gao’s elastic law in
the DIANA software (Guo et al., 2003).

2.3. Discussion on Drucker’s stability

It is important that the energy function obey the laws of thermodynamics when energy functions are
used to relate stress and strain in finite element programs. In other word, energy functions should mathe-
matically require the solid to increase its internal energy when we do work on it. Such energy functions are
called stable. As pointed out by Johnson et al. (1994) that unstable energy functions can cause havoc in the
nonlinear numerical solution algorithms used in finite element codes. Stability requires energy functions to
obey a certain condition, which is known as Drucker’s stability postulate that can be expressed as following:

Zda,-ds,— 2 0, (15)

where do; is an increment in the ith principal Cauchy stress and de; is an increment in the corresponding
strain at any point in the solid. Therefore, the tangential stiffness matrix D should be positive definite.
Johnson et al. derived Drucker’s stability postulate for the form of Rivlin expansion under the condition
of plane stress. A sufficient condition for the positive trace of D is that coefficients in Rivlin expansion
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are nonnegative. To ensure the determinant of D to be positive, an additional requirement is needed
(Johnson et al., 1994), namely
oW

WiuWpn —W2 >0, W;=—:.
117722 12 ij 6[,—[1-

(16)

Because Gao’s model is a polynomial function of invariants, the requirements of Drucker’s stability pos-
tulate derived by Johnson et al. is also suitable for Gao’s model. For incompressible material, /_; is equal to
I;. Substituting Eq. (10) into Eq. (16), gives

>rweow oW

2yn—2 yn—
o oF, “aner an*(n— 1) 172" —0> 0. (17)

Generally, @ >0 and 1 > n >3 (Gao, 1997), so that Gao’s model satisfies Drucker’s stability postulate.
Here, the power n is not necessarily an integer.

2.4. Numerical results and discussion on parameters

To demonstrate how material parameters of Gao’s model influence the behaviour of rubber-like mate-
rials, we analyse a cube specimen loaded in uniaxial tension with Gao’s constitutive law. We consider a
cubic element with unit length. Under the action of normal stress working in x-direction, the edge lengths
become A, u and p, respectively, but the edges still remain perpendicular. By definition, we have

F=le®e + ule e, +e;0e;), (18)

C=/¢ Qe+, 0e +e;Qe3), (19)

C'=/"e®e +ul(e,e +e@es), (20)

L=2+21%, I =.742u%  J=NC (21)
If we substitute Eqgs. (18)—(21) and (11) into Eq. (12), the Cauchy stress becomes

= i’% (2 =1 e @er + (W2 —I"' ) (e @ex + 63 D e3)). (22)
For uniaxial tension, the conditions o), = ¢.. = 0 give

(2 4+ 2e)" e = (7 w20 =0, (23)
Then Eq. (22) becomes

= %1’;71 <i2 - lﬁ) e ®e. (24)

When 1> 1 (u < 1), Eq. (23) gives

G
()" .

Egs. (24) and (25) can be combined to give

6 = 27Tnai> e, @ . (26)
The total load is

L=1lc =2na)®". (27)
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This equation shows that parameter «a is directly proportional to the stiffness of the rubber material and
parameter n not only influences the stiffness of the rubber material but also the curvature of the load-dis-
placement diagram.

The numerical results are shown in Fig. 1(a) where we fix parameter n =2, and take ¢ =0.1, 0.5,
1.0, 2.0, 10.0. In this picture, the solid lines are the results from numerical calculations and the circles
are the theoretical results from Eq. (27). It is shown that our numerical results are in good agreement with
the theoretical results, especially, for large deformations. But, relatively small differences at small deforma-
tion exist because the theoretical results from Eq. (27) are achieved under the condition of large deforma-
tions. Fig. 1(b) shows the loading force varying with material parameter @ at uniaxial displacement 1 = 2.
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Fig. 1. Load-displacement curves: (a) for different a (n = 2) and (b) at displacement 1 =2 (n = 2).
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Fig. 2. Load-displacement curves: (a) for different n> 1.5 (¢ =1) and (b) forn =1 (a =1).
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It illustrates that the stiffness is linearly increasing with parameter a. This conclusion is similar to a result
obtained from theoretical analysis.

Fig. 2 illustrates the numerical calculations, in which we plot the load versus the displacement by vari-
ation of material parameter n from 1 to 2.8 and fixing parameter ¢ = 1. It is clearly shown that the stiffness
and the curvature of the load—displacement diagram change when a different value for parameter » is used.

The load-displacement curves in Figs. 1 and 2 indicate that different nonlinear rubber-like materials can
be simulated by the constitutive law of Eq. (10) by means of properly selecting the material parameters a
and n. Further verification will be done in the next section.

3. Estimation of material parameters and numerical simulation
3.1. Experimental results

The verification of the numerical modelling cannot be restricted only to the simple tension case, because
the aim of numerical modelling of rubber-like material should be that a model is capable of predicting the
mechanical behaviour of any type of strain. To fulfil this goal, we examine certain simple types of defor-
mation to evaluate if the elastic law possesses the significant features of hyperelastic materials.

In this section, three sets of experimental results are used to assess the constitutive model. Firstly, an
experimental result is taken from Mullins and Tobin (1957) for a simple tension test. Secondly, simple ten-
sion and compression tests were carried out in the Institute of Thermomechnics (Pozivilova, 2003). The
third experiment was carried out at the French Research Department (Chagnon et al., 2004) for the com-
bined deformation of tension and pure shear.

3.1.1. Simple tension test

Many different tension tests on rubber specimens were carried out in the past. We have chosen the exper-
imental result of Mullins and Tobin (1957) for a simple tension test because this experiment was done under
cyclic loading and the data can also be used for a damage modelling of the material in a forthcoming paper.

The material used for the tension test was made of synthetic GR-S (government rubber-styrene) tire
tread vulcanizate containing MPC black. The stress—strain measurements were carried out at 25 °C on par-
allel-sided rubber strips, which are about 3 mm wide and 1 mm thick. The initial marked length was 1 in.
(25.4 mm). Light clamps were attached to the ends of the specimen, which was supported from the upper
one while stresses were applied by hanging weights at the lower end. The displacement between reference
marks was measured three minutes after each increment of load in order to minimize the creep effect
(Mullins and Tobin, 1957). A typical stress—strain diagram of the loading path is shown in Fig. 3. The
strains and stresses were calculated relative to the original dimensions of the test specimen.

3.1.2. Simple tension and compression test

The specimen used for a tension and compression test (Pozivilova, 2003) was a cylinder from soft rubber
with a diameter of 11.5 mm. The initial marked length for tension was 200 mm. The loading of the specimen
was supposed to be slow enough to reduce the visco-elastic effect of the rubber material and its hysteresis
behaviour. Because the length of the elongated specimen was much higher than the measured length, the
one-dimensional stress state was achieved during the tension test with sufficient accuracy.

The original length for compression was 10.15 mm. It was much shorter than the specimen in the tension
test in order to avoid buckling of the specimen. The specimen was compressed to less than half of its ori-
ginal length. The stress field of the specimen is not uniaxial during compression. Even if the heads of the
testing machine were greased, they still prevented extension of the diameter of the cylindrical specimen on
the pressure heads.
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Fig. 3. Stress-strain curve on GR-S tread vulcanizate.

The measured load—stretch curve is given in Fig. 4 for both tension and compression. The tension data
are in the right side of the graph with stretch larger than 1. The breaking of the rubber specimen occurred
for an elongation of approximately 200%. The compression data are in the left side of the diagram with a

stretch less than 1.
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Fig. 4. Load-stretch curve obtained from tension and compression tests.
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Fig. 5. Experimental data of stress—stretch curves: (a) simple tensile and (b) pure shear.

3.1.3. Simple tension and pure shear tests

Another experimental test for verification purposes was a tension and shear experiment, which was con-
ducted in the French Research Department by Chagnon et al. (2004). The material used for this experiment
is a carbon black filled natural rubber. The percentage of fillers is about 30%. The uniaxial tensile tests were
conducted on flat coupon specimens and the simple shear specimens are blocks. All experiments were per-
formed under displacement control.

The simple shear experimental data are transformed into pure shear data in order to simplify the anal-
ysis, because the analysis of simple shear experiments leads to difficulties for determination of material
parameters due to an indefinite principal direction of the strain. This transformation of the experimental
data from simple shear to pure shear is based on a proposal of Charlton and Yang (1994). Fig. 5(a) shows
the nominal tensile stress against the first principal stretch curve under uniaxial tension. Fig. 5(b) is a result
for pure shear data, in which the stresses are normalized by the maximum tensile stress.

3.2. Estimation of material parameters

The DIANA finite element package provides a parameter estimation module, which is based on a
weighted least squares approach. The main idea is based on a comparison between experimental data
and the outcome of the finite element model, followed by the determination of updated estimations of
the material parameters.

It is assumed that the observational data from experiments consist of a set of vectors with data y,
k=1, ..., N, where k indicates a load set or a discrete time parameter. Each vector contains values of mea-
surable properties, such as displacements or forces. The observational data are considered to be a nonlinear
function of a set of unknown material parameters x:

Y, = hi(x) + v, (28)

Function hy is the result of the finite element model and represents the dependence of the kth observation
on x if there were no observation errors. These errors are presented by a vector vy.
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First, only one vector of observational data y, is considered to estimate parameter vector x. The estima-
tor can be specified from the model, an uncertainty model for v; and a priori knowledge of x. The optimal
parameter vector x based on y; is obtained by minimizing the following quadratic expression:

Si= (v — )R (v — (%) + (% —%)"Q; " (% — x), (29)

where X is an initial guess for the parameter vector x. Matrix R; is a nonnegative symmetric matrix, which
represents the covariance matrix of the residuals v; and Q is a positive symmetric matrix, which represents
the covariance matrix of the estimation error in x,. The introduction of Q; makes it possible to adjust
weight to a priori estimate Xq and less weight to the displacements y;. In many applications it is common
to know the mean and variance of the expected residuals. In general, it can be stated that the larger Qy, the
smaller the influence of x,.

To minimize the misfit function of Eq. (29), more methods were proposed. A traditional way is to use the
Newton method (Tarantola, 1987)

, s\ res
(i+1) _ () _ [ 2 -
¥ : <6X2> 0 <6x> X0 (30)

in which
as TR~ (B S ) _ (0)
ox (.):(H R (h(x") —y) + Q' (xV —x')), (31)
’S . . _
(5¢)  ~®RH Q) (32)

Using Egs. (30)—(32), we arrive at the following algorithm:
x) = xO (H(i)TR—lH(f) + Q*l)*l % (H(i)TR—l (y _ h(x(i))) + Q*‘(X(O) _ x(i))), (33)

where the superscripts refer to the iteration number and where the subscripts are temporarily dropped. In
each iteration, the procedure executes m + 1 complete finite element calculations, where m is the number of
parameters. The m calculations are carried out to determine a matrix HY) numerically, as a linearization of
h; with respect to the most recent estimation XEH).

The sequential property of the estimator from Eq. (33) is clear when a vector y, with additional obser-
vational data from experiment is available. This can be data from another load set or from another point in
time. These data can be used together with the initial conditions x;, R, and Q, resulting in an improved
estimation X».

To determine the material parameters several sets of experimental data for each experimental loading
condition are considered as target values of material points. Since material parameter » varies from 1-3,
we assume 7 to be a certain value and then estimate material parameter a. Fig. 6 shows the curves of param-
eter a obtained via the inverse technique. The experimental data are indicated by different symbols on the
curves and observed at different displacements in the tensile test. For n = 1.75 the value of a converges rap-
idly to a constant value.

3.3. Results

3.3.1. Simple tension test

Since the experimental results are obtained under uniaxial tensile stress, it is easy to build up the finite
element model. We can use one solid element to represent the cubic specimen. The value of the total com-
putational tensile force is equal to the value of stress for Mullins and Tobin simple tension test if one solid
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element with unit length is used, because the stress in the experiment is calculated based on the undeformed
dimensions of the test specimen.

—4—n=1.6
—fl—n=1.66
—k—n=1.72
—¥—n=1.75
—¥—n=1.765
—8—n=1.78
=—4—n=1.785
——n=1.81
n=1.85
—4—n-19

Fig. 6. The inverse identification of parameter a against iteration number (represented by different strain levels) for different n.

Table 1
Estimated values of material parameters

Experiment Material parameters Values

Simple tension test a 0.75
n 1.62

100

90

80 f

stress
w
(=]

0 T T
0 1 2 3 4
strain

Fig. 7. Comparison of numerical results and experimental data for the Mullins and Tobin test: (O) experimental data and (H)
numerical result.
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The values of the material parameters estimated from the simple tension test, according to the procedure
described in the Section 3.2, are presented in Table 1. Fig. 7 shows that computational results are in good
agreement with the experiments for the simple tension test.

3.3.2. Simple tension and compression test

The material parameters estimated for tension and compression test are based on tension test data (see
Fig. 4). The results are listed in Table 2. In order to compare the experimental data and numerical results
for a simple tension test, the load calculated on a unit cubic solid element is multiplied by the ratio of area
of cross-section of the experimental specimen to the area of a cross-section of the unit cube due to the uni-
axial stress state. The result is shown in Fig. 9 (stretch larger than 1).

Because the requirement of a uniaxial stress condition in a compression test is not satisfied, the material
parameters derived from the tension test data have to be checked in the compression regime.

The cylindrical specimen for compression is axisymmetric and symmetric to the plane dividing the cyl-
inder into two equal parts. So, an axisymmetric analysis of a half cylinder was used in the finite element
calculation. The finite element model is given in Fig. 8. The FEM model is built up from eight-node axi-
symmetric elements with one pressure node. The pressure head of the testing machine is modelled by
one axisymmetric element with a stiffness, which is five orders higher than the stiffness of the specimen.
The model consists of 626 elements and includes 1983 nodes. Adequate boundary conditions were pre-
scribed to agree with the experimental conditions.

(1) All nodes in the axis of symmetry of the specimen and the pressure head only can move within the
initial axis of symmetry.

(2) The displacements of the nodes of the specimen at the horizontal contact surface were prevented from
moving in the radial direction, because of high friction between the specimen and pressure head of the
testing machine.

Table 2

Estimated values of material parameters

Experiment Material parameters Values

Tension and compression a 0.2625
n 1.05

Plane of sysmmetry

axis of symmertry

QIELINS 108IU0d

contact surface

pressure head

Fig. 8. FEM model of a quarter of the cross-section of the cylindrical specimen.
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Fig. 9. Comparison of numerical results and experimental data for the simple tension and compression tests: (O) experimental data
and (M) numerical results.
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Fig. 10. The stress distribution on the deformed mesh for compression of the cylinder simulated by Gao’s formulation.
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(3) The contact boundary conditions between the pressure head and the bottom of the specimen were
prescribed. The specimen and pressure head are connected by sharing one node on the axis of sym-
metry because of the continuity of displacement.

(4) To avoid the rolling of the rubber over the edge of the cylinder, the contact boundary conditions
between the pressure head and the wall of specimen were also prescribed.

An identical displacement was prescribed at all nodes in the upper cross-section of the cylinder. The
loading force can be calculated as a sum of reactions in all nodes belonging to the bottom of the pressure
head.

Fig. 9 illustrates the comparison between the experimental data and numerical results. We can see that
Gao’s model is very suitable for describing the mechanical response in both the tension regime of the load-
ing (stretch larger than 1) and the compression regime (stretch smaller than 1).

The distribution of the Von Mises stress on the deformed specimen for compression to 40% of its ori-
ginal length is given in Fig. 10. After a certain amount of deformation is reached (approximately to 80%
of the original length), the contact boundary conditions between the lateral surfaces of the cylindrical spec-
imen and pressure head were activated.

3.3.3. Simple tension and pure shear tests
The experimental data of both tension and pure shear are used to estimate the material parameters.
Table 3 gives the values of the material parameters. The numerical results for tension and pure shear

Table 3
Estimated values of material parameters
Experiment Material parameters Values
Tension and pure shear a 0.012
1.75
1.2 12
1 1 f
5 2 ff o/
508 208 o— |
go.
: :
o
Z o f{b
506 g 06
= B o
g e
E 04 g 04 0
= g (o}
0.2 0.2
0 - ‘ ‘ ‘ T 0 ‘ w T
1 2 3 4 5 6 1 2 3 4 5
(a) first principal stretch (b) first principal stretch

Fig. 11. Comparison of numerical results and experimental data for Chagnon etc. test, (a) uniaxial tensile test (b) pure shear test:
(O) experimental data and () numerical result.
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were compared with experimental data in Fig. 11, respectively. Fig. 11(a), similar to the results in Figs. 7
and 9, gave more evidence to support the statement that the computational results were in good agreement
with the experiments for the simple tension test.

Fig. 11(b) indicates that the correspondence between the computational results and experimental data
for the pure shear deformation is relatively good up to a certain amount of strain (over 300%). Beyond this
strain level, the experimental and computational curves start to deviate somewhat. One reason could
be that this model is based on the concept that the material should have resistance to tension and
compression.

It is important to emphasize that in our examples the same material parameters are valid for different
loading modes applied to the specimens from the same material. This property is crucial for the general
use of Gao’s elastic law.

4. Relation of Gao’s model with other strain energy functions
4.1. Comparison of formulae
Ogden’s model and Mooney—Rivlin’s model are commonly used by many researchers. Relations between

the Gao’s model and the Ogden’s model and the Mooney—Rivlin’s model can be derived. Ogden (1972a,b)
proposed a general but convenient form of the strain energy function, which can be written as

W= wp()+ F(K), (34)
where y; are constants, K is an invariant related to the relevant volume ratio
K =41 =311, + 215) = 172505 = J2, (35)

in which 4; are the principal stretches and ¢(«;) are strain invariants with exponent «; that may not be
integers,

4)(0([) = (}V?i + )L;i + )Lgl — 3)/0(, (36)
If F=0 and only two terms are taken into account in Ogden’s model, Eq. (34) gives
e e e R () (37)
1 2

If we choose
n=o =2, o = —2, u, = 2a, U, = —2a. (38)

Ogden’s model becomes equivalent to Gao’s model, for the case of n =1 Ogden obtained a sufficient con-
dition for satisfying Hill’s constitutive inequality,

wo; >0 (each i no summation). (39)

Evidently, Gao’s model satisfies this condition for n = 1. As for the general case, 1 <n <3, Gao’s model is
not equivalent to Ogden’s model. For that case, Hill’s inequality is difficult to proof, but the analysis and
discussion on Drucker’s stability postulate directly revealed reasonable values of n.

Another strain energy function was introduced by Mooney—Rivlin

W =Ci(I, —3)+ Ca(I; — 3), (40)
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Fig. 12. (a) Deformed FEM model of one eighth of cube, (b) load—displacement curves with Gao’s model and Mooney—Rivlin’s model
under confined compression, n=1and a=C;=C, = 1.

with C; and C, as the material parameters. When n = 1 and a = C; = C, = 1, the Mooney—Rivlin’s strain
energy function is equivalent to Gao’s model.

Fig. 12 is the numerical comparison between Gao’s and Mooney’s models by using a cube under con-
fined compression, in which all nodes in upper and bottom surfaces of the cube were prevented from mov-
ing within the surface. Because of symmetry only one eighth of the specimen is considered in the FEM
calculation. Compression was prescribed in all nodes of the upper symmetric surface. Similar to the analysis
of axisymmetric compression in Section 3.3.2, a contact boundary condition is used between the bottom
surface of rubber and the support element as well as between the wall of rubber and the support element
in order to easily pick up the reaction force and avoid the rolling of the rubber over the edge of the cube.
Fig. 12(a) shows the deformed cube. Fig. 12(b) illustrates the equivalent numerical results of the two
models.

In this numerical calculation, FEM meshes with different fineness are used to demonstrate convergence
of the result. In this example, when the number of elements is larger than 5x 5 x 5 the reaction force re-
mains constant.

4.2. Numerical simulations using different material models

Mechanical behaviour of rubber-like materials can be described with Ogden’s model. The Mullins and
Tobin experimental data was also analysed with this model (Ogden and Roxburgh, 1999). The correspon-
dence between the Ogden model and experimental data was good, however six material parameters were
needed in this fitting result. This is not convenient for practical application. It may be difficult to obtain
all parameters since the database of experimental results is limited.

We use the same experimental data to estimate the material parameters of the Mooney—Rivlin model and
obtain the material parameters C; = 7.5, C, = —2.9. The identification results are compared with Mullins
and Tobin experimental data in Fig. 13(a). It is clearly shown that the Mooney—Rivlin results are in good
agreement with the experimental results up to a certain level of deformation and the identification process is
relatively simple since only two parameters have to be determined.

Fig. 13(b) presents the identification results of Gao’s model compared with Mullins and Tobin experi-
mental data. The material parameters are listed in Table 1. Almost no difference between numerical results
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Fig. 13. Comparison of simulation results and experimental data for Mullins and Tobin test: (a) Mooney-Rivlin model and (b) Gao
model: (O) experimental data and (M) numerical result.

and experimental data exists, also for the larger deformation range. The Gao model, similar to the
Mooney—Rivlin model, only needs the estimation of two material parameters.

Based on analyses and comparisons in Sections 3 and 4, we can conclude that Gao’s elastic law possesses
fundamental characteristics and advantages in predicting the mechanical behaviour of rubber-like
materials.

5. Analysis of wedge loaded by a concentrated tensile force
5.1. Asymptotic analyses

A schematic sketch of a wedge before and after deformation is shown in Fig. 14, respectively. Two
Lagrangian coordinates are taken such that (R, ®, Z) are the polar coordinates before deformation while
(r,0,z) are the polar coordinates after deformation. In this paper we consider a plane strain case, i.e.,
Z = z. We assume that the deformation near the tip can be described by the following mapping functions:

{R =1,
0=g(), (=07 0<{<,
where o and f are positive constants to be determined, f'and g are unknown functions and {; is the value of
{ on the free boundary.

If we substitute Egs. (41) and (4) into Eq. (12) we obtain the Cauchy stress expression. In order to sim-
plify the expression we introduce a new coordinate system (#,{) in the vicinity of 6 = 0, which yields

(41)

2 3

=r{l1+= — — ce 42

n r<+29+80+489+ ) (42)
The inverse expression of Eqs. (42) and (41) can be written as

{r: ”(1 _%(C’”’“)z)’ (43)
0 ={n".
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Fig. 14. Polar coordinates: (a) before deformation and (b) after deformation.

According to Eq. (43) and neglecting the higher-order terms, we can obtain the Cauchy stress in the (1, ()
coordinate system

6 =2nan ' (Te, @ e, + 1" We; @ e, + n°S(e, @ e; + e, Xe,)) (44)
in which
A=(1+0),
T = 1)172"1/{”
) 45
{ W= U(072nun71(1 + ﬁ)sz _ un)7 ( )
§ = —o" 2w (14 BfY
where
=(1+p)f¢,
u :fIZ +f2g’2, (46)
f— 1 _n
“2-1) YT o1

Considering Eqs. (44)—(46) and the equilibrium condition as well as neglecting the higher-order terms,
gives

as .5
d )
¢ fv (47)
g+ 7 + ol + )T + (1 + 2a)S = 0.
The boundary conditions are
g(0) =0,
Apn—1 __ 2-2n 4y o (48)
g*B" =1+ p)""% when g = 0,,
S=0, (49)

f = fo = constant. (50)
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Eq. (48) contains two boundary conditions for the second equation in Eq. (47) so that g can be solved
numerically. We determine f; by considering the balance condition of load F with the resultant force of the
field. By integration we have

F = /(a” cos 0 — o’ sin 0)rdf = / o"rd0 = 4na@(1 + p) £~ (51)
or
o= (2 ) g (52)
0= 4na®, '

We obtain an asymptotic solution of stress state near the tip of the wedge.
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Fig. 15. Deformation of a wedge vertically loaded by a concentrated tensile force.
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Fig. 16. Comparison of calculated and theoretical curves of Cauchy stress ¢'” versus radius r.
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5.2. Finite element calculation

Because the asymptotic solution of the stress state is only available near the tip of the wedge, the numer-
ical specimen (as shown in Fig. 14(a)) has a geometry with @y = /6 and R, = 1.0 when @q=0. The
numerical calculation is carried out under a plane strain condition. The material parameters are taken
as a =10, n =2 and the load F = 0.5 N. The shape of the wedge near the tip after deformation is shown
in Fig. 15. The calculated curve of Cauchy stress ¢'" versus radius r (denoted as curve FEM) and the the-
oretical curve from Eq. (44) (denoted as curve AA) for ® = 0 are plotted in Fig. 16. It is shown that when r
is small enough, the numerical results are consistent with the asymptotic analysis.

6. Conclusions

The present work demonstrates the ability of Gao’s elastic law to describe mechanical behaviour of rub-
ber-like materials in the range of technical applications. Comparisons with Ogden’s formula and Mooney—
Rivlin’s formula by means of a theoretical and a numerical analysis demonstrate that Gao’s model performs
well in describing the behaviour of hyperelastic materials and adequately covers a very large range of defor-
mation. Discussion on Drucker’s stability postulate and results of numerical calculations show that Gao’s
model is stable in large strain finite element analyses.

The estimation of material parameters is relatively easy since only two material parameters are used in
Gao’s model. The numerical simulations of three cases of simple tension are in perfect agreement with the
experimental data, even when the deformation becomes very large. Furthermore, two examples prove that
the material parameters estimated from simple tension tests are valid for other loading conditions if the
specimens are made from the same material. This property is crucial for the general use of Gao’s elastic law.

As an application, a singular problem of a wedge loaded by a concentrated tensile force is analysed based
on this elastic law. The numerical results are consistent with the asymptotic analysis.
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